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APPENDIX 1 
 

The impedance of the cranium to cerebral blood flow is the ratio of pressure to flow, which by 

linear lumped-parameter approximations of intracranial dynamics is expressed according to  

 
𝒁𝒄𝒓𝒂𝒏𝒊𝒖𝒎 = 𝑹𝒄𝒂𝒑 +

𝑹𝑪𝑺𝑭
𝝎𝟐𝑹𝑪𝑺𝑭

𝟐𝑪𝟐 + (𝝎𝟐𝑳𝑪 − 𝟏)𝟐
+ 𝒋 -

𝝎𝑪.−𝝎𝟐𝑳𝟐 + 𝑳
𝑪 − 𝑹𝑪𝑺𝑭

𝟐/

𝝎𝟐𝑹𝑪𝑺𝑭
𝟐𝑪𝟐 + (𝝎𝟐𝑳𝑪 − 𝟏)𝟐

0 (1) 

   

where 𝑍-./0123 is the combined impedance of the capillary and CSF path, 𝑅-/4 is the resistance 

to longitudinal flow in the capillary lumina, 𝑅567 is resistance to radial oscillations in the brain, 

CSF path, and vasculature, 𝜔 is the radial frequency expressed in radians, 𝐶 is capacitance, 𝐿 

is inductance , and 𝑗 = √−1.  

 

We designate the real and imaginary components of the ICP pulse suppression impedance as 

𝑅-./0123 and 𝑋567: 

 𝑹-./0123 =
𝑹𝑪𝑺𝑭

𝝎𝟐𝑹𝑪𝑺𝑭𝟐𝑪𝟐 + (𝝎𝟐𝑳𝑪 − 𝟏)𝟐
 (2) 

 
𝑿𝑪𝑺𝑭 =

𝝎𝑪.−𝝎𝟐𝑳𝟐 + 𝑳
𝑪 − 𝑹𝑪𝑺𝑭

𝟐/

𝝎𝟐𝑹𝑪𝑺𝑭
𝟐𝑪𝟐 + (𝝎𝟐𝑳𝑪 − 𝟏)𝟐

 (3) 

so that   

 𝒁𝒄𝒓𝒂𝒏𝒊𝒖𝒎 = 𝑹𝒄𝒂𝒑 + 𝑹-./0123 + 𝒋𝑿567 (4) 

And we define 

 𝒁567 = 𝑹-./0123 + 𝒋𝑿567 (5) 

where 𝑍567 is the impedance of the ICP pulse suppression (tank part of the circuit). The ICP 

pulse suppression impedance phase 𝜃89 is 



 𝜽𝒘𝒌 = 𝐚𝐫𝐜𝐭𝐚𝐧 B
𝑿567

𝑹-./0123
C (6) 

and thus 

 
𝜽-./0123 = 𝐚𝐫𝐜𝐭𝐚𝐧 -

𝝎𝑪 .−𝝎𝟐𝑳𝟐 + 𝑳
𝑪 − 𝑹𝑪𝑺𝑭

𝟐/
𝑹567

0 (7) 

                                                                                      

The maximal (optimal) ICP pulse suppression impedance 𝑍89 is the real part 𝑅89 when the 

imaginary part 𝑋567 is zero. The resistance 𝑅89 is then a local maximum and represents ‘pure’ 

resistance without reactance. We choose pure resistance without reactance as the normal ICP 

pulse suppression impedance because, in normal dynamics, there is minimal reflectance of the 

arterial pulse from the periphery back to the heart9 , and this corresponds mathematically to 

resistance without reactance. With pure ICP pulse suppression resistance, the optimal heart 

rate 𝜔89 (in radians) is  

 

 
𝝎-./0123 = D 𝟏

𝑳𝑪
−
𝑹𝑪𝑺𝑭𝟐

𝑳𝟐
 (8) 

Replacing  𝜔	 in the ICP pulse suppression resistance 𝑅89 	(equation 2) with the optimal ICP 

pulse suppression heart rate 𝜔89 (equation 8) we obtain  

the windkessel effectiveness 𝑾 (i.e., the impedance offered by the tuned ICP pulse 

suppression): 

 

 𝑾 =
𝑳

𝑹𝑪𝑺𝑭𝑪
 (2) 

 

 



APPENDIX 2 
Analysis method: Overview 

The data processing and modeling has three steps. First, we pre-process the raw ABP and ICP 

recordings from dogs. Second, we create transfer function of circuit model in z domain, which 

corresponds to discrete-time signal. Third, we fit an ARX model to the ABP and ICP data, and 

obtain a corresponding z-domain transfer function. Finally, we build the relationship between the 

transfer function of circuit model and the transfer function of ARX model, and aim to estimate 

the circuit elements by minimizing the difference between the two transfer functions. 

 
Data analysis: data preprocessing 

 

As mentioned in the text, the data sets only contain the raw ABP and ICP time series, and their 

time stamps. For each data set, we estimate the real-time heart rate in a moving window. In 

each window, we detect the peaks of systolic and diastolic arterial pressures and their 

corresponding time stamps. The average heart rate in this window is calculated by counting the 

pairs of systolic and diastolic peaks and normalizing it by time length. Except for computing the 

heart rate, we filter the raw data because we are analyzing the fundamental frequency band and 

we want to avoid aliasing, so we apply a lowpass filter and a band-stop filter on each raw 

dataset. The lowpass filter is used for removing high-frequency noise and the band-stop filter for 

removing the respiratory effect which is usually located around 0.1~0.5𝐻𝑧. For implementation, 

we chose Butterworth filters.  

 

Circuit Analysis: Transfer Function 

 



The transfer function is defined as the ratio of the Laplace transform of the output (the ICP, i.e., 

voltage across the resistor) to the Laplace transform of input (the ABP, i.e., voltage of the 

sources). Given the impedances of the circuit elements 𝑅!"#, 𝑅$%&, 𝑠𝐿 and 1 𝑠𝐶⁄ , the transfer 

function of the ICP pulse suppression circuit is  

 
𝑯(𝒔) =

𝑽𝒐(𝒔)
𝑽𝒊(𝒔)

=
𝑹𝒄𝒂𝒑

𝑹𝒄𝒂𝒑 +
(𝟏 𝒔𝑪)⁄ (𝑹𝑪𝑺𝑭 + 𝒔𝑳))
(𝟏 𝒔𝑪⁄ ) + (𝑹𝑪𝑺𝑭 + 𝒔𝑳)

=
𝑹𝒄𝒂𝒑𝑳𝑪𝒔𝟐 + 𝑹𝒄𝒂𝒑𝑹𝑪𝑺𝑭𝑪𝒔 + 𝑹𝒄𝒂𝒑

𝑹𝒄𝒂𝒑𝑳𝑪𝒔𝟐 + 8𝑹𝒄𝒂𝒑𝑹𝑪𝑺𝑭𝑪 + 𝑳9𝒔 + 𝑹𝒄𝒂𝒑 + 𝑹𝑪𝑺𝑭
 

(10) 

The dynamics of pressure and flow in the ICP pulse suppression can be described by second-

order differential equations. To facilitate discrete time-data analysis, we map the transfer 

function from the Laplace domain to the Z domain. We use the Tustin (bilinear) approximation 

(Oppenheim)  

 
𝒛 = 𝒆𝒔𝑻 ≈

𝟏 + 𝒔𝑻𝟐
𝟏 − 𝒔𝑻𝟐

 (11) 

 𝒔 ≈
𝟐
𝑻
×
𝒛 − 𝟏
𝒛 + 𝟏

 (12) 

where 𝑇 is the sampling interval. The z-domain transfer function of the ICP pulse suppression 

circuit is 

 
𝑯𝒄(𝒛) ≈

𝑵𝟎 +𝑵𝟏𝒛4𝟏 +𝑵𝟐𝒛4𝟐

𝑫𝟎 +𝑫𝟏𝒛4𝟏 +𝑫𝟐𝒛4𝟐
 (13) 

where the coefficients are  

 𝑵𝟎 = 𝟒𝑹𝒄𝒂𝒑𝑳𝑪 + 𝟐𝑻𝑹𝒄𝒂𝒑𝑹𝑪𝑺𝑭𝑪 + 𝑻𝟐𝑹𝒄𝒂𝒑 

𝑵𝟏 = 𝟐𝑻𝟐𝑹𝒄𝒂𝒑 − 𝟖𝑹	𝒄𝒂𝒑𝑳𝑪 

𝑵𝟐 = 𝟒𝑹𝒄𝒂𝒑𝑳𝑪 − 𝟐𝑻𝑹𝒄𝒂𝒑𝑹𝑪𝑺𝑭𝑪 + 𝑻𝟐𝑹𝒄𝒂𝒑 

𝑫𝟎 = 𝟒𝑹𝒄𝒂𝒑𝑳𝑪 + 𝟐𝑻𝑹𝒄𝒂𝒑𝑹𝑪𝑺𝑭𝑪 + 𝑻𝟐8𝑹𝒄𝒂𝒑 + 𝑹𝑪𝑺𝑭9 + 𝟐𝑻𝑳 

(14) 



𝑫𝟏 = 𝟐𝑻𝟐8𝑹𝒄𝒂𝒑 + 𝑹𝑪𝑺𝑭9 − 𝟖𝑹𝒄𝒂𝒑𝑳𝑪 

𝑫𝟐 = 𝟒𝑹𝒄𝒂𝒑𝑳𝑪 − 𝟐𝑻𝑹𝒄𝒂𝒑𝑹𝑪𝑺𝑭𝑪 + 𝑻𝟐8𝑹𝒄𝒂𝒑 + 𝑹𝑪𝑺𝑭9 − 𝟐𝑻𝑳 

 

Time Series Modeling and Transfer Function 

An ARX model is a model of observed time series where a given observation (e.g., ICP) is a 

linear function of previous observations and of current and past values of another time series 

(e.g., ABP), also known as input. The name ARX stands for Autoregressive with extra input. In 

the literature, ARX is also referred to as the Autoregressive with Exogenous Variables model, 

the exogenous variable being the input variable.  

 

Both input ABP and output ICP are time series data. We model the cerebral ICP pulse 

suppression in the time domain by a linear autoregression of the ICP with an exogenous input 

(ABP), thus creating an ARX model. When 𝒙[𝒏] and 𝒚[𝒏] are discrete input and output signals 

representing ABP and ICP time series, respectively, the formulation of ARX model is 

 
𝒚[𝒏] =K𝒂𝒊𝒚[𝒏 − 𝒊] +K𝒃𝒋𝒙[𝒏 − 𝒋]

𝒒

𝒋8𝟎

𝒑

𝒊8𝟏

+ 𝜺[𝒏] (15) 

where the first summation is a linear combination of previous 𝑝 outputs with 𝑎9 , 𝑖 = 1,2,3… , 𝑝 as 

weights, and the second summation is a linear combination of current input and 𝑞 previous 

inputs with 𝑏: , 𝑗 = 0,1,2… , 𝑞 as weights. The 𝜀[𝑛] is a disturbance or observation noise. The 𝑝 

and 𝑞 are called as orders of the model. And the symbols 𝑎9 , 𝑖 = 1,2,3… , 𝑝 and  𝑏: , 𝑗 = 0,1,2… , 𝑞 

are the coefficients of the model. Thus, the current ICP sample is expressed as a linear 

regression of previous ICP samples and ABP samples. Given the ARX model, the 

corresponding z-domain transfer function of the dynamic system is 

 
𝑯(𝒛) =

𝒃𝟎 + 𝒃𝟏𝒛4𝟏 +⋯+ 𝒃𝒒𝒛4𝒒

𝟏 − 𝒂𝟏𝒛4𝟏 −⋯− 𝒂𝒑𝒛4𝒑
 (16) 



When the order 𝑝 = 2 and 𝑞 = 2, the transfer function is simplified to 

 
𝑯𝑨𝑹𝑿(𝒛) =

𝒃𝟎 + 𝒃𝟏𝒛4𝟏 + 𝒃𝟐𝒛4𝟐

𝟏 − 𝒂𝟏𝒛4𝟏 − 𝒂𝟐𝒛4𝟐
 (17) 

 

Relationship between Electrical Circuit Model and Time Series Model 

 

Comparing equation (13) and equation (17), the transfer function of the ARX model has the 

same form as the transfer function of the proposed circuit model. We connect them and 

estimate the circuit elements by time series analysis. Ideally, the coefficients should satisfy 

 −𝒂𝟏 = 𝑫𝟏 𝑫𝟎⁄  

−𝒂𝟐 = 𝑫𝟐 𝑫𝟎⁄  

𝒃𝟎 = 𝑵𝟎 𝑫𝟎⁄  

𝒃𝟏 = 𝑵𝟏 𝑫𝟎⁄  

𝒃𝟐 = 𝑵𝟐 𝑫𝟎⁄  

(18) 

Note that the coefficients 𝑎9 , 𝑖 = 1,2 and  𝑏: , 𝑗 = 0,1,2 in equation (17) can take any values. 

However, the coefficients 𝑁9 , 𝑖 = 0,1,2 and  𝐷: , 𝑗 = 0,1,2 in equation (13) have to satisfy the 

relationships in equation (14). Obviously, the transfer function of the circuit is a subset of the 

transfer functions of the ARX model. In equation (18), the mapping from the right side (circuit 

elements) to the left side (coefficients of the ARX model) is one-to-one. But given a set of ARX 

coefficients, it is not always possible to find the corresponding set of circuit elements which 

satisfy these equations. We discuss how to obtain a solution in the following section. 

 

Estimating the Circuit Elements according to Time-series Model 

 

As mentioned above, we cannot obtain the estimates of the circuit elements from the time series 

model directly. Considering that the ICP pulse suppression notch appears around the heart rate, 



in order to compare and analyze the transfer functions in a specific frequency band, we derive 

the mathematical expressions of the transfer functions in the frequency domain. Given equation 

(13), the transfer function in the frequency domain is given by 

 
𝑯𝒄8𝒆𝒋𝝎9 =

𝑵𝟎 +𝑵𝟏𝒆4𝒋𝝎 +𝑵𝟐𝒆4𝒋𝟐𝝎

𝑫𝟎 +𝑫𝟏𝒆4𝒋𝝎 +𝑫𝟐𝒆4𝒋𝟐𝝎
 (19) 

Applying Euler's formula 𝑒:? = cos(ω) + jsin(ω), we can rewrite the transfer function with 

separate real and imaginary parts: 

 𝑯𝒄8𝒆𝒋𝝎9 =
𝑵𝒓𝑫𝒓 +𝑵𝒊𝑫𝒊
𝑫𝒓𝟐 +𝑫𝒊𝟐

+ 𝒋	
𝑵𝒊𝑫𝒓 −𝑵𝒓𝑫𝒊
𝑫𝒓𝟐 +𝑫𝒊𝟐

 (20) 

where 

 𝑵𝒓 = 𝑵𝟎 𝐜𝐨𝐬(𝟐𝝎) + 𝑵𝟏 𝐜𝐨𝐬(𝝎) + 𝑵𝟐 

𝑵𝒊 = 𝑵𝟎 𝐬𝐢𝐧(𝟐𝝎) + 𝑵𝟏 𝐬𝐢𝐧(𝝎) 

𝑫𝒓 = 𝑫𝟎 𝐜𝐨𝐬(𝟐𝝎) + 𝑫𝟏 𝐜𝐨𝐬(𝝎) + 𝑫𝟐 

𝑫𝒊 = 𝑫𝟎 𝐬𝐢𝐧(𝟐𝛚) + 𝑫𝟏 𝐬𝐢𝐧(𝝎) 

(21) 

Similarly, the transfer function of the ARX model can also be rewritten as 

 𝑯𝑨𝑹𝑿8𝒆𝒋𝝎9 =
𝑩𝒓𝑨𝒓 +𝑩𝒊𝑨𝒊
𝑨𝒓𝟐 + 𝑨𝒊𝟐

+ 𝒋	
𝑩𝒊𝑨𝒓 −𝑩𝒓𝑨𝒊
𝑨𝒓𝟐 + 𝑨𝒊𝟐

 (22) 

 

where 

 𝑩𝒓 = 𝒃𝟎 𝐜𝐨𝐬(𝟐𝝎) + 𝒃𝟏 𝐜𝐨𝐬(𝝎) + 𝒃𝟐 

𝑩𝒊 = 𝒃𝟎 𝐬𝐢𝐧(𝟐𝝎) + 𝒃𝟏 𝐬𝐢𝐧(𝝎) 

𝑨𝒓 = 𝐜𝐨𝐬(𝟐𝝎) − 𝒂𝟏 𝐜𝐨𝐬(𝝎) − 𝒂𝟐 

𝑨𝒊 = 𝐬𝐢𝐧(𝟐𝛚) − 𝒂𝟏 𝐬𝐢𝐧(𝝎) 

(23) 

 

 

Then we compare their real and imaginary parts separately, and define a cost function by: 



 𝓙(𝜽) =Ktu𝓡𝒆w𝑯𝒄8𝒆𝒋𝝎9x − 𝓡𝒆w𝑯𝑨𝑹𝑿8𝒆𝒋𝝎9xy
𝟐

𝝎

+ u𝓘𝒎w𝑯𝒄8𝒆𝒋𝝎9x − 𝓘𝒎w𝑯𝑨𝑹𝑿8𝒆𝒋𝝎9xy
𝟐
| 

(24) 

where the unknown vector 𝜽 contains the circuit elements 𝑅!"#, 𝑅$%&, 𝐿 and 𝐶. The cost function 

indicates the sum of squared distances between the real parts and imaginary parts of the 

transfer functions from the circuit and the ARX model at each frequency. We minimize 𝒥(𝜽) 

over the frequency band containing the heart rate and under the constraints𝜽 > 𝟎. 
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