This site usescookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at1-2of2items for

  • Author or Editor: Sami Tuffahax
  • Refine by Access: allx
Clear All Modify Search
Free access

Nicholas von Guionneau, Karim A. Sarhane, Gerald Brandacher, Shehan Hettiaratchy, Allan J. Belzberg, and Sami Tuffaha

Proximal peripheral nerve injuries often result in poor functional outcomes, chiefly because of the long time period between injury and the reinnervation of distal targets, which leads to muscle and Schwann cell atrophy. The supercharged end-to-side (SETS) nerve transfer is a recent technical innovation that introduces donor axons distally into the side of an injured nerve to rapidly innervate and support end organs while allowing for additional reinnervation after a proximal repair at the injury site. However, the mechanisms by which donor axons grow within the recipient nerve, contribute to muscle function, and impact the regeneration of native recipient axons are poorly understood. This uncertainty has slowed the transfer’s clinical adoption. The primary objective of this article is to comprehensively review the mechanisms underpinning axonal regeneration and functional recovery after a SETS nerve transfer. A secondary objective is to report current clinical applications in the upper limb and their functional outcomes. The authors also propose directions for future research with the aim of maximizing the clinical utility of the SETS transfer for peripheral nerve surgeons and their patients.

Restricted access

Saad Javeed, Jacob K. Greenberg, Justin K. Zhang, Benjamin Plog, Christopher F. Dibble, Braeden Benedict, Kathleen Botterbush, Jawad M. Khalifeh, Huacong Wen, Yuying Chen, Yikyung Park, Allan J. Belzberg, Sami Tuffaha, Stephen S. Burks, Allan D. Levi, Eric L. Zager, Amir H. Faraji, Mark A. Mahan, Rajiv Midha, Thomas J. Wilson, Neringa Juknis, and Wilson Z. Ray

OBJECTIVE

High cervical spinal cord injury (SCI) results in complete loss of upper-limb function, resulting in debilitating tetraplegia and permanent disability. Spontaneous motor recovery occurs to varying degrees in some patients, particularly in the 1st year postinjury. However, the impact of this upper-limb motor recovery on long-term functional outcomes remains unknown. The objective of this study was to characterize the impact of upper-limb motor recovery on the degree of long-term functional outcomes in order to inform priorities for research interventions that restore upper-limb function in patients with high cervical SCI.

开云体育世界杯赔率

A prospective cohort of high cervical SCI (C1–4) patients with American Spinal Injury Association Impairment Scale (AIS) grade A–D injury and enrolled in the Spinal Cord Injury Model Systems Database was included. Baseline neurological examinations and functional independence measures (FIMs) in feeding, bladder management, and transfers (bed/wheelchair/chair) were evaluated. Independence was defined as score ≥ 4 in each of the FIM domains at 1-year follow-up. At 1-year follow-up, functional independence was compared among patients who gained recovery (motor grade ≥ 3) in elbow flexors (C5), wrist extensors (C6), elbow extensors (C7), and finger flexors (C8). Multivariable logistic regression evaluated the impact of motor recovery on functional independence in feeding, bladder management, and transfers.

RESULTS

Between 1992 and 2016, 405 high cervical SCI patients were included. At baseline, 97% of patients had impaired upper-limb function with total dependence in eating, bladder management, and transfers. At 1 year of follow-up, the largest proportion of patients who gained independence in eating, bladder management, and transfers had recovery in finger flexion (C8) and wrist extension (C6). Elbow flexion (C5) recovery had the lowest translation to functional independence. Patients who achieved elbow extension (C7) were able to transfer independently. On multivariable analysis, patients who gained elbow extension (C7) and finger flexion (C8) were 11 times more likely to gain functional independence (OR 11, 95% CI 2.8–47, p < 0.001) and patients who gained wrist extension (C6) were 7 times more likely to gain functional independence (OR 7.1, 95% CI 1.2–56, p = 0.04). Older age (≥ 60 years) and motor complete SCI (AIS grade A–B) reduced the likelihood of gaining independence.

CONCLUSIONS

After high cervical SCI, patients who gained elbow extension (C7) and finger flexion (C8) had significantly greater independence in feeding, bladder management, and transfers than those with recovery in elbow flexion (C5) and wrist extension (C6). Recovery of elbow extension (C7) also increased the capability for independent transfers. This information can be used to set patient expectations and prioritize interventions that restore these upper-limb functions in patients with high cervical SCI.

Baidu
map