This site usescookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at1-3of3items for

  • Author or Editor: Callan M. Gillespiex
  • Refine by Access: allx
Clear All Modify Search
Free access

Kyle A. McGrath, Eric S. Schmidt, Jeremy G. Loss, Callan M. Gillespie, Robb W. Colbrunn, Robert S. Butler, and Michael P. Steinmetz

OBJECTIVE

Excessive stress and motion at the L5–S1 level can lead to degenerative changes, especially in patients with posterior instrumentation suprajacent to L5. Attention has turned to utilization of L5–S1 anterior lumbar interbody fusion (ALIF) to stabilize the lumbosacral junction. However, questions remain regarding the effectiveness of stand-alone ALIF in the setting of prior posterior instrumented fusions terminating at L5. The purpose of this study was to assess the biomechanical stability of an L5–S1 ALIF with increasing lengths of posterior thoracolumbar constructs.

开云体育世界杯赔率

Seven human cadaveric spines (T9–sacrum) were instrumented with pedicle screws from T10 to L5 and mounted to a 6 degrees-of-freedom robot. Posterior fusion construct lengths (T10–L5, T12–L5, L2–5, and L4–5) were instrumented to each specimen, and torque-fusion level relationships were determined for each construct in flexion-extension, axial rotation, and lateral bending. A stand-alone L5–S1 ALIF was then instrumented, and L5–S1 motion was measured as increasing pure moments (2 to 12 Nm) were applied. Motion reduction was calculated by comparing L5–S1 motion across the ALIF and non-ALIF states.

RESULTS

The average motion at L5–S1 in axial rotation, flexion-extension, and lateral bending was assessed for each fusion construct with and without ALIF. After adding ALIF to a posterior fusion, L5–S1 motion was significantly reduced relative to the non-ALIF state in all but one fused surgical condition (p < 0.05). Longer fusions with ALIF produced larger L5–S1 motions, and in some cases resulted in motions higher than native state motion.

CONCLUSIONS

后融合构造L4-5可能美联社propriately stabilized by a stand-alone L5–S1 ALIF when using a nominal threshold of 80% reduction in native motion as a potential positive indicator of fusion. The results of this study allow conclusions to be drawn from a biomechanical standpoint; however, the clinical implications of these data are not well defined. These findings, when taken in appropriate clinical context, can be used to better guide clinicians seeking to treat L5–S1 pathology in patients with prior posterior thoracolumbar constructs.

Free access

Pranay Soni, Jeremy G. Loss, Callan M. Gillespie, Robb W. Colbrunn, Richard Schlenk, Michael P. Steinmetz, Pablo F. Recinos, Edward C. Benzel, and Varun R. Kshettry

OBJECTIVE

The direct lateral approach is an alternative to the transoral or endonasal approaches to ventral epidural lesions at the lower craniocervical junction. In this study, the authors performed, to their knowledge, the first in vitro biomechanical evaluation of the craniovertebral junction after sequential unilateral C1 lateral mass resection. The authors hypothesized that partial resection of the lateral mass would not result in a significant increase in range of motion (ROM) and may not require internal stabilization.

开云体育世界杯赔率

The authors performed multidirectional in vitro ROM testing using a robotic spine testing system on 8 fresh cadaveric specimens. We evaluated ROM in 3 primary movements (axial rotation [AR], flexion/extension [FE], and lateral bending [LB]) and 4 coupled movements (AR+E, AR+F, LB + left AR, and LB + right AR). Testing was performed in the intact state, after C1 hemilaminectomy, and after sequential 25%, 50%, 75%, and 100% C1 lateral mass resection.

RESULTS

There were no significant increases in occipital bone (Oc)–C1, C1–2, or Oc–C2 ROM after C1 hemilaminectomy and 25% lateral mass resection. After 50% resection, Oc–C1 AR ROM increased by 54.4% (p = 0.002), Oc LB ROM increased by 47.8% (p = 0.010), and Oc–C1 AR+E ROM increased by 65.8% (p < 0.001). Oc–C2 FE ROM increased by 7.2% (p = 0.016) after 50% resection; 75% and 100% lateral mass resection resulted in further increases in ROM.

CONCLUSIONS

In this cadaveric biomechanical study, the authors found that unilateral C1 hemilaminectomy and 25% resection of the C1 lateral mass did not result in significant biomechanical instability at the occipitocervical junction, and 50% resection led to significant increases in Oc–C2 ROM. This is the first biomechanical study of lateral mass resection, and future studies can serve to validate these findings.

Free access

Pranay Soni, Jeremy G. Loss, Callan M. Gillespie, Robb W. Colbrunn, Richard Schlenk, Michael P. Steinmetz, Pablo F. Recinos, Edward C. Benzel, and Varun R. Kshettry

OBJECTIVE

The direct lateral approach is an alternative to the transoral or endonasal approaches to ventral epidural lesions at the lower craniocervical junction. In this study, the authors performed, to their knowledge, the first in vitro biomechanical evaluation of the craniovertebral junction after sequential unilateral C1 lateral mass resection. The authors hypothesized that partial resection of the lateral mass would not result in a significant increase in range of motion (ROM) and may not require internal stabilization.

开云体育世界杯赔率

The authors performed multidirectional in vitro ROM testing using a robotic spine testing system on 8 fresh cadaveric specimens. We evaluated ROM in 3 primary movements (axial rotation [AR], flexion/extension [FE], and lateral bending [LB]) and 4 coupled movements (AR+E, AR+F, LB + left AR, and LB + right AR). Testing was performed in the intact state, after C1 hemilaminectomy, and after sequential 25%, 50%, 75%, and 100% C1 lateral mass resection.

RESULTS

There were no significant increases in occipital bone (Oc)–C1, C1–2, or Oc–C2 ROM after C1 hemilaminectomy and 25% lateral mass resection. After 50% resection, Oc–C1 AR ROM increased by 54.4% (p = 0.002), Oc LB ROM increased by 47.8% (p = 0.010), and Oc–C1 AR+E ROM increased by 65.8% (p < 0.001). Oc–C2 FE ROM increased by 7.2% (p = 0.016) after 50% resection; 75% and 100% lateral mass resection resulted in further increases in ROM.

CONCLUSIONS

In this cadaveric biomechanical study, the authors found that unilateral C1 hemilaminectomy and 25% resection of the C1 lateral mass did not result in significant biomechanical instability at the occipitocervical junction, and 50% resection led to significant increases in Oc–C2 ROM. This is the first biomechanical study of lateral mass resection, and future studies can serve to validate these findings.

Baidu
map