This site usescookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Search Results

You are looking at1-9of9items for

  • Author or Editor: Jennifer Sokolowskix
  • Refine by Access: allx
Clear All Modify Search
Free access

Jungeun Ahn, Panagiotis Mastorakos, Jennifer D. Sokolowski, Ching-Jen Chen, Ryan Kellogg, and Min S. Park

OBJECTIVE

In recent years, hyperoxemia in the intensive care unit has received attention as potentially contributing to negative outcomes in the setting of cardiac arrest, ischemic stroke, and traumatic brain injury. The authors sought to evaluate whether hyperoxemia contributes to worse outcomes in the setting of aneurysmal subarachnoid hemorrhage (aSAH) and to summarize suggested pathophysiological mechanisms.

开云体育世界杯赔率

A systematic literature review was conducted without date restrictions on the PubMed and Web of Science databases on September 15, 2021. All studies that assessed the relationship between patients treated for aSAH and hyperoxemia were eligible independent of the criteria used to define hyperoxemia. All nonclinical studies and studies that did not report outcome data specific to patients with aSAH were excluded. A total of 102 records were found and screened, resulting in assessment of 10 full-text studies, of which 7 met eligibility criteria. Risk of bias was assessed using the Downs and Black checklist. A meta-analysis on the pooled 2602 patients was performed, and forest plots were constructed. Additionally, a review of the literature was performed to summarize available data regarding the pathophysiology of hyperoxemia.

RESULTS

The included studies demonstrated an association between hyperoxemia and increased morbidity and mortality following aSAH. The criteria used to determine hyperoxemia varied among studies. Pooling of univariate data showed hyperoxemia to be associated with poor neurological outcome (OR 2.26, 95% CI 1.66–3.07; p < 0.001), delayed cerebral ischemia (DCI) (OR 1.91, 95% CI 1.31–2.78; p < 0.001), and increased incidence of poor neurological outcome or mortality as a combined endpoint (OR 2.36, 95% CI 1.87–2.97; p < 0.001). Pooling of multivariable effect sizes showed the same relationship for poor neurological outcome (OR 1.28, 95% CI 1.07–1.55; p = 0.01) and poor neurological outcome and mortality as a combined endpoint (OR 1.17, 95% CI 1.11–1.23; p < 0.001). Additionally, review of preclinical studies underlined the contribution of oxidative stress due to hyperoxemia to acute secondary brain injury and DCI.

CONCLUSIONS

Reported outcomes from the available studies have indicated that hyperoxemia is associated with worse neurological outcome, mortality, and DCI. These findings provide a general guideline toward avoiding hyperoxemia in the acute setting of aSAH. Further studies are needed to determine the optimal ventilation and oxygenation parameters for acute management of this patient population.

Free access

Mazin Elsarrag, Sauson Soldozy, Parantap Patel, Pedro Norat, Jennifer D. Sokolowski, Min S. Park, Petr Tvrdik, and M. Yashar S. Kalani

OBJECTIVE

Enhanced recovery after surgery (ERAS) is a multidimensional approach to improving the care of surgical patients using subspecialty- and procedure-specific evidence-based protocols. The literature provides evidence of the benefits of ERAS implementation, which include expedited functional recovery, decreased postoperative morbidity, reduced costs, and improved subjective patient experience. Although extensively examined in other surgical areas, ERAS principles have been applied to spine surgery only in recent years. The authors examine studies investigating the application of ERAS programs to patients undergoing spine surgery.

开云体育世界杯赔率

The authors conducted a systematic review of the PubMed and MEDLINE databases up to November 20, 2018.

RESULTS

二十全文包含在the qualitative analysis. The majority of studies were retrospective reviews of nonrandomized data sets or qualitative investigations lacking formal control groups; there was 1 protocol for a future randomized controlled trial. Most studies demonstrated reduced lengths of stay and no increase in rates of readmissions or complications after introduction of an ERAS pathway.

CONCLUSIONS

These introductory studies demonstrate the potential of ERAS protocols, when applied to spine procedures, to reduce lengths of stay, accelerate return of function, minimize postoperative pain, and save costs.

Free access

Sauson Soldozy, Jacob Galindo, Harrison Snyder, Yusuf Ali, Pedro Norat, Kaan Yağmurlu, Jennifer D. Sokolowski, Khadijeh Sharifi, Petr Tvrdik, Min S. Park, and M. Yashar S. Kalani

Neuroimaging is an indispensable tool in the workup and management of patients with neurological disorders. Arterial spin labeling (ASL) is an imaging modality that permits the examination of blood flow and perfusion without the need for contrast injection. Noninvasive in nature, ASL provides a feasible alternative to existing vascular imaging techniques, including angiography and perfusion imaging. While promising, ASL has yet to be fully incorporated into the diagnosis and management of neurological disorders. This article presents a review of the most recent literature on ASL, with a special focus on its use in moyamoya disease, brain neoplasms, seizures, and migraines and a commentary on recent advances in ASL that make the imaging technique more attractive as a clinically useful tool.

Free access

Kathryn N. Kearns, Jennifer D. Sokolowski, Kimberly Chadwell, Maureen Chandler, Therese Kiernan, Francesco Prada, M. Yashar S. Kalani, and Min S. Park

Contrast-enhanced ultrasound (CEUS) is a relatively new imaging modality in the realm of neurosurgical disease. CEUS permits the examination of blood flow through arteries, veins, and capillaries via intravascular contrast agents and allows vascular architectural mapping with extreme sensitivity and specificity. While it has established utility in other organ systems such as the liver and kidneys, CEUS has not been studied extensively in the brain. This report presents a review of the literature on the neurosurgical applications of CEUS and provides an outline of the imaging modality’s role in the diagnosis, evaluation, and treatment of neurosurgical disease.

Free access

Sauson Soldozy, Pedro Norat, Mazin Elsarrag, Ajay Chatrath, John S. Costello, Jennifer D. Sokolowski, Petr Tvrdik, M. Yashar S. Kalani, and Min S. Park

The pathogenesis of intracranial aneurysms remains complex and multifactorial. While vascular, genetic, and epidemiological factors play a role, nascent aneurysm formation is believed to be induced by hemodynamic forces. Hemodynamic stresses and vascular insults lead to additional aneurysm and vessel remodeling. Advanced imaging techniques allow us to better define the roles of aneurysm and vessel morphology and hemodynamic parameters, such as wall shear stress, oscillatory shear index, and patterns of flow on aneurysm formation, growth, and rupture. While a complete understanding of the interplay between these hemodynamic variables remains elusive, the authors review the efforts that have been made over the past several decades in an attempt to elucidate the physical and biological interactions that govern aneurysm pathophysiology. Furthermore, the current clinical utility of hemodynamics in predicting aneurysm rupture is discussed.

Free access

Kaan Yağmurlu, Jennifer Sokolowski, Sauson Soldozy, Pedro Norat, Musa Çırak, Petr Tvrdik, Mark E. Shaffrey, and M. Yashar S. Kalani

OBJECTIVE

硬脑膜的淋巴管的发现促使强度rest in the mechanisms of drainage of interstitial fluid from the CNS, the anatomical components involved in clearance of macromolecules from the brain, mechanisms of entry and exit of immune components, and how these pathways may be involved in neurodegenerative diseases and cancer metastasis. In this study the authors describe connections between a subset of arachnoid granulations (AGs) and the venous circulation via intradural vascular channels (IVCs), which stain positively with established lymphatic markers. The authors postulate that the AGs may serve as a component of the human brain’s lymphatic system.

开云体育世界杯赔率

AGs and IVCs were examined by high-resolution dissection under stereoscope bilaterally in 8 fresh and formalin-fixed human cadaveric heads. The superior sagittal sinus (SSS) and adjacent dura mater were immunostained with antibodies against Lyve-1 (lymphatic marker), podoplanin (lymphatic marker), CD45 (panhematopoietic marker), and DAPI (nuclear marker).

RESULTS

AGs can be classified as intradural or interdural, depending on their location and site of drainage. Interdural AGs are distinct from the dura, adhere to arachnoid membranes, and occasionally open directly in the inferolateral wall or floor of the SSS, although some cross the infradural folds of the dura’s inner layer to meet with intradural AGs and IVCs. Intradural AGs are located within the leaflets of the dura. The total number of openings from the AGs, lateral lacunae, and cortical veins into the SSS was 45 ± 5.62 per head. On average each cadaveric head contained 6 ± 1.30 intradural AGs. Some intradural AGs do not directly open into the SSS and use IVCs to connect to the venous circulation. Using immunostaining methods, the authors demonstrate that these tubular channels stain positively with vascular and lymphatic markers (Lyve-1, podoplanin).

CONCLUSIONS

AGs consist of two subtypes with differing modes of drainage into the SSS. A subset of AGs located intradurally use tubular channels, which stain positively with vascular and lymphatic markers to connect to the venous lacunae and ultimately to the SSS. The present study suggests that AGs may function as a component of brain lymphatics. This finding has important clinical implications for cancer metastasis to and from the CNS and may shed light on mechanisms of altered clearance of macromolecules in the setting of neurodegenerative diseases.

Free access

Sauson Soldozy, John S. Costello, Pedro Norat, Jennifer D. Sokolowski, Kamron Soldozy, Min S. Park, Petr Tvrdik, and M. Yashar S. Kalani

While the majority of cerebral revascularization advancements were made in the last century, it is worth noting the humble beginnings of vascular surgery throughout history to appreciate its progression and application to neurovascular pathology in the modern era. Nearly 5000 years of basic human inquiry into the vasculature and its role in neurological disease has resulted in the complex neurosurgical procedures used today to save and improve lives. This paper explores the story of the extracranial-intracranial approach to cerebral revascularization.

Free access

Sauson Soldozy, Pedro Norat, Kaan Yağmurlu, Jennifer D. Sokolowski, Khadijeh A. Sharifi, Petr Tvrdik, Min S. Park, and M. Yashar S. Kalani

Arteriovenous malformation (AVM) presenting with epilepsy significantly impacts patient quality of life, and it should be considered very much a seizure disorder. Although hemorrhage prevention is the primary treatment aim of AVM surgery, seizure control should also be at the forefront of therapeutic management. Several hemodynamic and morphological characteristics of AVM have been identified to be associated with seizure presentation. This includes increased AVM flow, presence of long pial draining vein, venous outflow obstruction, and frontotemporal location, among other aspects. With the advent of high-throughput image processing and quantification methods, new radiographic attributes of AVM-related epilepsy have been identified. With respect to therapy, several treatment approaches are available, including conservative management or interventional modalities; this includes microsurgery, radiosurgery, and embolization or a combination thereof. Many studies, especially in the domain of microsurgery and radiosurgery, evaluate both techniques with respect to seizure outcomes. The advantage of microsurgery lies in superior AVM obliteration rates and swift seizure response. In addition, by incorporating electrophysiological monitoring during AVM resection, adjacent or even remote epileptogenic foci can be identified, leading to extended lesionectomy and improved seizure control. Radiosurgery, despite resulting in reduced AVM obliteration and prolonged time to seizure freedom, avoids the risks of surgery altogether and may provide seizure control through various antiepileptic mechanisms. Embolization continues to be used as an adjuvant for both microsurgery and radiosurgery. In this study, the authors review the latest imaging techniques in characterizing AVM-related epilepsy, in addition to reviewing each treatment modality.

Free access

Rebecca M. Burke, Ching-Jen Chen, Dale Ding, Thomas J. Buell, Jennifer D. Sokolowski, Cheng-Chia Lee, Hideyuki Kano, Kathryn N. Kearns, Shih-Wei Tzeng, Huai-che Yang, Paul P. Huang, Douglas Kondziolka, Natasha Ironside, David Mathieu, Christian Iorio-Morin, Inga S. Grills, Caleb Feliciano, Gene H. Barnett, Robert M. Starke, L. Dade Lunsford, and Jason P. Sheehan

OBJECTIVE

Stereotactic radiosurgery (SRS) is a treatment option for pediatric brain arteriovenous malformations (AVMs), and early obliteration could encourage SRS utilization for a subset of particularly radiosensitive lesions. The objective of this study was to determine predictors of early obliteration after SRS for pediatric AVMs.

开云体育世界杯赔率

The authors performed a retrospective review of the International Radiosurgery Research Foundation AVM database. Obliterated pediatric AVMs were sorted into early (obliteration ≤ 24 months after SRS) and late (obliteration > 24 months after SRS) responders. Predictors of early obliteration were identified, and the outcomes of each group were compared.

RESULTS

The overall study cohort was composed of 345 pediatric patients with obliterated AVMs. The early and late obliteration cohorts were made up of 95 (28%) and 250 (72%) patients, respectively. Independent predictors of early obliteration were female sex, a single SRS treatment, a higher margin dose, a higher isodose line, a deep AVM location, and a smaller AVM volume. The crude rate of post-SRS hemorrhage was 50% lower in the early (3.2%) than in the late (6.4%) obliteration cohorts, but this difference was not statistically significant (p = 0.248). The other outcomes of the early versus late obliteration cohorts were similar, with respect to symptomatic radiation-induced changes (RICs), cyst formation, and tumor formation.

CONCLUSIONS

Approximately one-quarter of pediatric AVMs that become obliterated after SRS will achieve this radiological endpoint within 24 months of initial SRS. The authors identified multiple factors associated with early obliteration, which may aid in prognostication and management. The overall risks of delayed hemorrhage, RICs, cyst formation, and tumor formation were not statistically different in patients with early versus late obliteration.

Baidu
map