This site usescookies存储信息、标签和跟踪设置that help give you the very best browsing experience. Dismiss this warning

The evolution of stereoelectroencephalography: symbiotic progress in medical imaging and procedural technologies

Aaron Parrott Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Search for other papers by Aaron Parrott in
jns
Google Scholar
PubMed
Close
BS
,
Sherwin A. Tavakol Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Search for other papers by Sherwin A. Tavakol in
jns
Google Scholar
PubMed
Close
MD, MPH
,
Kristin Zieles Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Search for other papers by Kristin Zieles in
jns
Google Scholar
PubMed
Close
MSHI, MBA
,
Andrew Jea Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Search for other papers by Andrew Jea in
jns
Google Scholar
PubMed
Close
MD, MBA, MHA
, and
Virendra R. Desai Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Search for other papers by Virendra R. Desai in
jns
Google Scholar
PubMed
Close
MD
Restricted access

Purchase Now

USD$45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD$525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD$624.00
USD$45.00
USD$525.00
USD$624.00
Print or Print + Online Sign in

Stereoelectroencephalography (sEEG) was pioneered in France, at a time when cerebral anatomy was invisible to contemporaneous imaging modalities. Epilepsy surgeons relied on indirect targeting techniques to identify epileptogenic tissue. Since then, alongside the rapid rise of medical imaging technology, sEEG has experienced dramatic stepwise progress. A flurry of advancements has pushed this technique to its current-day standards, enabling neurosurgeons to access any intracranial location in a safe, highly precise, and expeditious manner. Presently, epilepsy surgeons throughout the world apply robot-assisted sEEG. Herein, the authors chronicle this incredible evolution.

ABBREVIATIONS

AC-PC = anterior commissure–posterior commissure ; EEG = electroencephalography ; iEEG = invasive EEG ; MNI = Montreal Neurological Institute ; SEEG = stereoelectroencephalography .
  • Collapse
  • Expand
  • 1

    NunezPL,SrinivasanR.Electric Fields of the Brain: The Neurophysics of EEG.Oxford University Press;2006.

  • 2

    ReifPS,StrzelczykA,RosenowF.The history of invasive EEG evaluation in epilepsy patients.Seizure.2016;41:191195.

  • 3

    DorferC,RydenhagB,BaltuchG,et al.How technology is driving the landscape of epilepsy surgery.Epilepsia.2020;61(5):841855.

  • 4

    JasperHH.Electrical activity of the brain.Annu Rev Physiol.1941;3(1):377398.

  • 5

    TalairachJ,BancaudJ,BonisA,SziklaG,TournouxP.Functional stereotaxic exploration of epilepsy.Confin Neurol.1962;22:328331.

  • 6

    TalairachJ,BancaudJ,SziklaG,BonisA,GeierS,VedrenneC.New approach to the neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. 1. Introduction and history. Article in French.Neurochirurgie.1974;20(suppl 1):1240.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    HararyM,CosgroveGR.Jean Talairach: a cerebral cartographer.Neurosurg Focus.2019;47(3):E12.

  • 8

    ZernovDN.L’encéphalometrie.Rev Gen Clin Ther.1890;19:302.

  • 9

    HorsleyV,ClarkeRH.The structure and functions of the cerebellum examined by a new method.Brain.1908;31(1):45124.

  • 10

    SpiegelEA,WycisHT,MarksM,LeeAJ.Stereotaxic apparatus for operations on the human brain.Science.1947;106(2754):349350.

  • 11

    LeksellL.A stereotactic apparatus for intracranial surgery.Acta Chir Scand.1949;99:229233.

  • 12

    RahmanM,MuradGJA,MoccoJ.Early history of the stereotactic apparatus in neurosurgery.Neurosurg Focus.2009;27(3):E12.

  • 13

    MazoyerB.In memoriam: Jean Talairach (1911-2007): a life in stereotaxy.Hum Brain Mapp.2008;29(2):250252.

  • 14

    TalairachJ,TournouxP.平面立体定位Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging.Georg Thieme;1988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    TalairachJ,HecaenH,DavidM,MonnierM,AjuriaguerraD.Recherches sur la coagulation thérapeutique des structures sous-corticales chez l’homme.Rev Neurol (Paris).1949;81:424.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    YoungRF.Application of robotics to stereotactic neurosurgery.Neurol Res.1987;9(2):123128.

  • 17

    MunariC.Depth electrode implantation at Hôpital Sainte Anne, Paris. InEngelJJr, ed.Surgical Treatment of the Epilepsies.Raven Press;1987:583588.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    SteinmetzH,FürstG,FreundHJ.Variation of perisylvian and calcarine anatomic landmarks within stereotaxic proportional coordinates.AJNR Am J Neuroradiol.1990;11(6):11231130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    BourdillonP,ChâtillonCE,MolesA,et al.Effective accuracy of stereoelectroencephalography: robotic 3D versus Talairach orthogonal approaches.J Neurosurg.2018;131(6):19381946.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    AbelTJ,Varela OsorioR,Amorim-LeiteR,et al.Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique.J Neurosurg Pediatr.2018;22(1):3746.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    EvansA,CollinsD,MillsS,BrownE,KellyR,PetersT.3D statistical neuroanatomical models from 305 MRI volumes. In:1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.IEEE;2005;18131817.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    GholipourT,KoubeissiMZ,ShieldsDC.Stereotactic electroencephalography.Clin Neurol Neurosurg.2020;189:105640.

  • 23

    FillerA.The history, development and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, and DTI.Nature Precedings.2009;4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    ShalitMN,IsraeliY,MatzS,CohenML.Intra-operative computerized axial tomography.Surg Neurol.1979;11(5):382384.

  • 25

    BrownRA.A computerized tomography-computer graphics approach to stereotaxic localization.J Neurosurg.1979;50(6):715720.

  • 26

    BoëthiusJ,BergströmM,GreitzT.Stereotaxic computerized tomography with a GE 8800 scanner.J Neurosurg.1980;52(6):794800.

  • 27

    HeilbrunMP,RobertsTS,ApuzzoML,WellsTHJr,SabshinJK.Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system.J Neurosurg.1983;59(2):217222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    WellsTHJr,CosmanER,BallRE.The Brown-Roberts-Wells (BRW) arc: its concept as a spatial navigation system.Appl Neurophysiol.1987;50(1-6):127132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    CardinaleF,CasaceliG,RaneriF,MillerJ,Lo RussoG.Implantation of stereoelectroencephalography electrodes: a systematic review.J Clin Neurophysiol.2016;33(6):490502.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    RobertsDW,StrohbehnJW,孵化JF,MurrayW,KettenbergerH.A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.J Neurosurg.1986;65(4):545549.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    TronnierVM,WirtzCR,KnauthM,et al.Intraoperative computer-assisted neuronavigation in functional neurosurgery.Stereotact Funct Neurosurg.1996;66(1-3):6568.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    BarnettGH,KormosDW,SteinerCP,WeisenbergerJ.Intraoperative localization using an armless, frameless stereotactic wand. Technical note.J Neurosurg.1993;78(3):510514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    KatoA,YoshimineT,HayakawaT,et al.A frameless, armless navigational system for computer-assisted neurosurgery. Technical note.J Neurosurg.1991;74(5):845849.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    BlackPM,MoriartyT,AlexanderEIII,et al.Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications.开云体育app官方网站下载入口.1997;41(4):831845.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    MatulaC,RösslerK,ReddyM,SchindlerE,KoosWT.Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow.Comput Aided Surg.1998;3(4):174182.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    ZaaroorM,BejeranoY,WeinfeldZ,Ben-HaimS.Novel magnetic technology for intraoperative intracranial frameless navigation: in vivo and in vitro results.开云体育app官方网站下载入口.2001;48(5):11001108.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    VakhariaVN,SparksR,O’KeeffeAG,et al.Accuracy of intracranial electrode placement for stereoencephalography: a systematic review and meta-analysis.Epilepsia.2017;58(6):921932.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    GirgisF,OvrucheskyE,KennedyJ,SeyalM,ShahlaieK,SaezI.Superior accuracy and precision of SEEG electrode insertion with frame-based vs. frameless stereotaxy methods.Acta Neurochir (Wien).2020;162(10):25272532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    BenabidAL,LavalleeS,HoffmannD,CinquinP,DemongeotJ,DanelF.Potential use of robots in endoscopic neurosurgery.Acta Neurochir Suppl (Wien).1992;54:93-97.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    CardinaleF,D’OrioP,RevayM,CastanaL.Robotics in neurosurgery: overture. In:Gonzalez MartinezJA,CardinaleF, eds.Robotics in Neurosurgery: Principles and Practice.Springer;2022:312.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    SpireWJ,JobstBC,ThadaniVM,WilliamsonPD,DarceyTM,RobertsDW.Robotic image-guided depth electrode implantation in the evaluation of medically intractable epilepsy.Neurosurg Focus.2008;25(3):E19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    OverleySC,ChoSK,MehtaAI,ArnoldPM.Navigation and robotics in spinal surgery: where are we now?开云体育app官方网站下载入口.2017;80(3S):S86S99.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    FomenkoA,SerletisD.Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review.开云体育app官方网站下载入口.2018;83(4):642650.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    CossuM,CardinaleF,CastanaL,et al.Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures.开云体育app官方网站下载入口.2005;57(4):706718.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    VarmaTRK,EldridgePR,ForsterA,et al.Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery.Stereotact Funct Neurosurg.2003;80(1-4):132135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    DlakaD,ChudyD,JerbicB,KastelancicA,RaguzM.Robot-assisted stereotactic and spinal neurosurgery: a review of literature. In:2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO).IEEE;2021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    BekelisK,RadwanTA,DesaiA,RobertsDW.Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety.J Neurosurg.2012;116(5):10021006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    FariaC,ErlhagenW,RitoM,De MomiE,FerrignoG,BichoE.Review of robotic technology for stereotactic neurosurgery.IEEE Rev Biomed Eng.2015;8:125137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    DlakaD,ŠvacoM,ChudyD,et al.Frameless stereotactic brain biopsy: a prospective study on robot-assisted brain biopsies performed on 32 patients by using the RONNA G4 system.Int J Med Robot.2021;17(3):e2245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    TayASS,MenakerSA,ChanJL,MamelakAN.Placement of stereotactic electroencephalography depth electrodes using the Stealth Autoguide robotic system: technical methods and initial results.Oper Neurosurg (Hagerstown).2022;22(4):e150e157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    DesaiVR,LeeJJ,SampleT,KleimanNS,LumsdenA,BritzGW.First in man pilot feasibility study in extracranial carotid robotic-assisted endovascular intervention.开云体育app官方网站下载入口.2021;88(3):506514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    LinCC,LinHC,LeeWY.Neurosurgical robotic arm drilling navigation system.Int J Med Robot.2017;13(3):e7190.

  • 53

    CardinaleF,CossuM,CastanaL,et al.Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures.开云体育app官方网站下载入口.2013;72(3):353366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    ZhengJ,LiuYL,ZhangD,et al.Robot-assisted versus stereotactic frame-based stereoelectroencephalography in medically refractory epilepsy.Neurophysiol Clin.2021;51(2):111119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    HoAL,FengAY,KimLH,et al.Stereoelectroencephalography in children: a review.Neurosurg Focus.2018;45(3):E7.

  • 56

    ChabardesS,AbelTJ,CardinaleF,KahaneP.评论:了解stereoelectroencephalography: what’s next?开云体育app官方网站下载入口.2018;82(1):E15E16.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    ChakrabortyAR,AlmeidaNC,PratherKY,et al.Resting-state functional magnetic resonance imaging with independent component analysis for presurgical seizure onset zone localization: a systematic review and meta-analysis.Epilepsia.2020;61(9):19581968.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    BakrSM,PatelA,ZaazoueMA,et al.Standard work tools for dynamic stereoelectroencephalography using ROSA: naming convention and perioperative planning.J Neurosurg Pediatr.2021;27(4):411419.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    KimLH,FengAY,HoAL,et al.Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients.Epilepsy Res.2020;159(106253):106253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    YaoY,HuW,ZhangC,et al.A comparison between robot-guided and stereotactic frame-based stereoelectroencephalography (SEEG) electrode implantation for drug-resistant epilepsy.J Robot Surg.2023;17(3):10131020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    SongS,DaiY,ChenZ,ShiS.SEEG电极的准确性和可行性分析e implantation using the VarioGuide frameless navigation system in patients with drug-resistant epilepsy.J Neurol Surg A Cent Eur Neurosurg.2021;82(5):430436.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    González-MartínezJ,BulacioJ,ThompsonS,et al.Technique, results, and complications related to robot-assisted stereoelectroencephalography.开云体育app官方网站下载入口.2016;78(2):169180.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    SerletisD,BulacioJ,BingamanW,NajmI,González-MartínezJ.The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients.J Neurosurg.2014;121(5):12391246.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    VakhariaVN,RodionovR,MiserocchiA,et al.Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial.Sci Rep.2021;11(1):17127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    D’AgostinoE,KanterJ,SongY,AronsonJP.Stereoencephalography electrode placement accuracy and utility using a frameless insertion platform without a rigid cannula.Oper Neurosurg (Hagerstown).2020;18(4):409416.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    ZhaoR,XueP,ZhouY,et al.Application of robot-assisted frameless stereoelectroencephalography based on multimodal image guidance in pediatric refractory epilepsy: experience of a pediatric center in a developing country.World Neurosurg.2020;140:e161e168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    LiuQ,MaoZ,WangJ,et al.The accuracy of a novel self-tapping bone fiducial marker for frameless robot-assisted stereo-electro-encephalography implantation and registration techniques.Int J Med Robot.2023;19(2):e2479.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68

    OllivierI,BehrC,CebulaH,et al.Efficacy and safety in frameless robot-assisted stereo-electroencephalography (SEEG) for drug-resistant epilepsy.Neurochirurgie.2017;63(4):286290.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    LadisichB,MacheggerL,RomagnaA,et al.VarioGuide® frameless neuronavigation-guided stereoelectroencephalography in adult epilepsy patients: technique, accuracy and clinical experience.Acta Neurochir (Wien).2021;163(5):13551364.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70

    KojimaY,UdaT,KawashimaT,et al.Primary experiences with robot-assisted navigation-based frameless stereo-electroencephalography: higher accuracy than neuronavigation-guided manual adjustment.Neurol Med Chir (Tokyo).2022;62(8):361368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    MachetanzK,GrimmF,WuttkeTV,et al.Frame-based and robot-assisted insular stereo-electroencephalography via an anterior or posterior oblique approach.J Neurosurg.2021;135(5):14771486.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72

    DorferC,MinchevG,CzechT,et al.A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy.J Neurosurg.2017;126(5):16221628.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    US Food and Drug Administration.Stealth Autoguide System, Midas Rex Legend Depth Stop System; Regulation Number: 21 CFR 882.4560; Regulation Name: Stereotaxic Instrument; Regulatory Class: Class II; Product Code: HAW, HBC, HBB, HBE, November 1, 2019.Accessed July 19, 2023.www.accessdata.fda.gov/cdrh_docs/pdf19/K191597.pdf

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 435 435 100
Full Text Views 51 51 2
PDF Downloads 80 80 4
EPUB Downloads 0 0 0
Baidu
map